Newton-sor iterative method for solving the two-dimensional porous medium equation
نویسندگان
چکیده
منابع مشابه
The spectral iterative method for Solving Fractional-Order Logistic Equation
In this paper, a new spectral-iterative method is employed to give approximate solutions of fractional logistic differential equation. This approach is based on combination of two different methods, i.e. the iterative method cite{35} and the spectral method. The method reduces the differential equation to systems of linear algebraic equations and then the resulting systems are solved by a numer...
متن کاملA New Two-stage Iterative Method for Linear Systems and Its Application in Solving Poisson's Equation
In the current study we investigate the two-stage iterative method for solving linear systems. Our new results shows which splitting generates convergence fast in iterative methods. Finally, we solve the Poisson-Block tridiagonal matrix from Poisson's equation which arises in mechanical engineering and theoretical physics. Numerical computations are presented based on a particular linear system...
متن کاملPerron’s Method for the Porous Medium Equation
This work extends Perron’s method for the porous medium equation in the slow diffusion case. The main result shows that nonnegative continuous boundary functions are resolutive in a general cylindrical domain.
متن کاملthe spectral iterative method for solving fractional-order logistic equation
in this paper, a new spectral-iterative method is employed to give approximate solutions of fractional logistic differential equation. this approach is based on combination of two different methods, i.e. the iterative method cite{35} and the spectral method. the method reduces the differential equation to systems of linear algebraic equations and then the resulting systems are solved by a numer...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Fundamental and Applied Sciences
سال: 2018
ISSN: 1112-9867
DOI: 10.4314/jfas.v9i6s.30